Добро пожаловать в блог! Здесь вы можете поглубже познакомиться с математикой, порешать задания ГИА и ЕГЭ, а в перерывах почитать стихи и посмотреть чудесные цветы. Удачи Вам!

понедельник, 11 декабря 2017 г.

Удачное дополнительное построение




Рассмотрим серию геометрических задач из открытого банка ОГЭ ФИПИ. В решении используются свойства средней линии трапеции, свойства параллелограмма, равновеликие треугольники и равновеликие треугольник и трапеция. Но главное, что облегчает решение -
дополнительное построение.

Задача. Найдите площадь трапеции, диагонали которой равны 15 и 7, а средняя линия равна 10.
Решение. Построим заданную трапецию, в ней средняя линия МР=10, диагонали BD=15 и АС=7. По свойству средней линии трапеции можно найти сумму оснований ВС+АD=2МР = 20.
На первый взгляд все сложно.

воскресенье, 10 декабря 2017 г.

Найдите основания трапеции



Рассмотрим сложную геометрическую задачу из открытого банка ОГЭ ФИПИ. В решении используются свойства средней линии и середин оснований трапеции, свойство медианы прямоугольного треугольника, свойство отрезков соединяющих середины противоположных сторон выпуклого четырехугольника.

Задача. Углы при одном из оснований трапеции равны 70 и 20 градусам, а отрезки, соединяющие середины противоположных сторон трапеции, равны 18 и 10. Найдите основания трапеции.
Решение. Пусть основание AD больше основания BC, тогда острые углы равные 70 и 20 градусам лежат при оснований AD. Обозначим буквами М и Р середины боковых сторон AB и CD соответственно, тогда МР - средняя линия трапеции, по свойству средней линии трапеции AD+BC=2МР. Из условия мы знаем что МР равна либо 18 либо 10 .

суббота, 9 декабря 2017 г.

Модуль квадратичной функции



Еще одна серия задач на построение графиков функций, но теперь это квадратичные функции под знаком модуля. Также повышенной трудности из открытого банка заданий ФИПИ по математике. Эти задачи предлагаются в контрольно-измерительных материалах ОГЭ под тем же номером 23 (модуль "Алгебра").

 Задача 1. Постройте график функции y=x2 +5x+4∣. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Решение. Область определения данной функции R.
График функции y=x2 +5x+4∣ получается из графика квадратичной функции y=x2 +5x+4 симметричным отображением относительно оси Ох той части графика, где у меньше нуля. Найдем координаты вершины параболы y=x2 +5x+4 по формуле х0= -b/(2a) =-5/2=-2,5. Тогда у0 = (-2,5)2+5*(-2,5)+ 4= - 2,25. Модуль эту точку отобразит в точку (2,5; 2,25).
Найдем точки пересечения параболы с осью Ох, решив уравнение x2 +5x+4 = 0. Его корни х1 = -1 и х2 = -4. В этих точках график функции y=x2 +5x+4∣ будет касаться оси Ох.

Графики с дыркой на ОГЭ




Рассмотрим задачи повышенной трудности из открытого банка заданий ФИПИ по математике. В них необходимо уметь строить графики различных функций, находить точки пересечения этих графиков. Такие задачи предлагаются в контрольно-измерительных материалах ОГЭ под номером 23 (модуль "Алгебра") и оцениваются в 2 балла.

Задача 1. Постройте график функции 
Определите, при каких значениях m прямая y=m не имеет с графиком общих точек.

пятница, 8 декабря 2017 г.

На доске натуральные числа




Рассмотрим очередную задачу из открытого банка заданий ФИПИ по математике (профильный уровень), задача о натуральных числах и довольно простая. Такие задачи в контрольно-измерительных материалах стоят под номером 19. За правильное решение подобных задач можно получить сразу 4 первичных балла.

Задача. На доске написано несколько различных натуральных чисел, произведение любых двух из которых больше 25 и меньше 85.
а) Может ли на доске быть 5 чисел?
б) Может ли на доске быть 6 чисел?
в) Какое наибольшее значение может принимать сумма чисел на доске, если их четыре?
Решение. Произведение любых двух чисел из некоторого набора натуральных чисел больше 25, если в этом наборе произведение двух самых маленьких чисел больше 25. Произведение любых двух чисел из того же набора меньше 85, если в этом наборе произведение двух самых больших чисел меньше 85.
а) Такой набор из 5 чисел легко подобрать 5,6,7,8,9.

четверг, 7 декабря 2017 г.

Сколько сделать фотографий?



Рассмотрим задачу из открытого банка заданий ФИПИ по математике (профильный уровень), такие задачи в КИМах стоят под номером 19. За правильное решение таких задач можно получить сразу 4 первичных балла.
Задача 1. Маша и Наташа делали фотографии в течение некоторого количества подряд идущих дней. В первый день Маша сделала m фотографий, а Наташа  n фотографий. В каждый следующий день каждая из девочек делала на одну фотографию больше, чем в предыдущий день. Известно, что Наташа за всё время сделала суммарно на 1001 фотографию больше, чем Маша, и что фотографировали они больше одного дня.
а) Могли ли они фотографировать в течение 7 дней?
б) Могли ли они фотографировать в течение 8 дней?
в) Какое наибольшее суммарное число фотографий могла сделать Наташа за все дни фотографирования, если известно, что в последний день Маша сделала меньше 40 фотографий?

Решение.
а) за семь дней сделают
Маша m+ m+1+ m+2+ m+3+ m+4+ m+5+ m+6=7 m+21,
Наташа n+ n+1+ n+2+ n+3+ n+4+ n+5+ n+6=7 n+21.
Но Наташа сделала на 1001 фотографию больше, чем Маша. То есть
7 n+21-(7 m+21)=1001. Отсюда  7 n-7 m=1001 и, после деления на 7 получаем  
 n- m=143. n= m+143.
Из полученного равенства видно, что решений в этом случае бесконечно много, например n=1, m=144 или  n=2,  m=145.

Решение логарифмических неравенств


Рассмотрим решение логарифмических неравенств из открытого банка заданий ФИПИ для подготовки к ЕГЭ по математике, соответствующего заданию под номером 15 КИМов.

среда, 22 ноября 2017 г.

Сушим фрукты на ОГЭ



Приводим серию задач из открытого банка заданий ФИПИ по математике для подготовки к ОГЭ. Эти задачи идут на итоговой аттестации под номером 22.
Задача 1. Свежие фрукты содержат 78% воды, а высушенные  22%. Сколько требуется свежих фруктов для приготовления 22 кг высушенных фруктов?
Решение. Высушенные фрукты содержат 22% воды, остальные 78% - «сухие» вещества, из которых состоят фрукты. Найдем количество «сухих» веществ в высушенных фруктах
22 кг  -  100%
х кг   -   78%. Отсюда х = 22*78/100 = 17,16 кг.
Но в свежих фруктах содержалось такое же количество «сухих» веществ (испаряется только вода), получаем
17,16 кг   -  22%
х кг         -  100%. Отсюда х = 17,16*100/22= 78 кг.
Ответ 78.
Задача 2. Свежие фрукты содержат 88% воды, а высушенные  30%. Сколько сухих фруктов получится из 420 кг свежих фруктов?

вторник, 21 ноября 2017 г.

Две окружности и две касательных



Рассмотрим решение задачи повышенной трудности из сборника контрольно-измерительных материалов «Математика. ОГЭ. 2018» под редакцией И.В. Ященко.
Задача. Окружности радиусов 42 и 84 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Решение. Продолжим касательные АС и BD до пересечения в точке Е. Вспомним свойство касательных.
Если из точки вне окружности провести две касательные к этой окружности, то их отрезки от данной точки до точек касания равны и центр окружности лежит на биссектрисе угла, образованного касательными.

вторник, 14 ноября 2017 г.

Доказано тремя способами



Рассмотрим три способа решения одной задачи по геометрии повышенной сложности, такие задачи на ОГЭ идут под номером 25, на доказательство.
Задача. Две окружности с центрами К и Р пересекаются в точках В и С, центры К и Р лежат по одну сторону относительно прямой ВС. Доказать, что прямая ВС перпендикулярна прямой КР.
Доказательство.
1 способ. (Используем свойства равнобедренного треугольника) Соединим центры К и Р с точками пересечения окружностей В и С. Треугольник КВС – равнобедренный, так как КВ и КС – радиусы окружности с центром К. Из точки К проведем перпендикуляр КН к прямой ВС. По свойству равнобедренного треугольника КН является и медианой, то есть ВН=НС.
Треугольник РВС – тоже равнобедренный, так как РВ и РС – радиусы окружности с центром Р. Соединим точки Р и Н, РН – медиана треугольника РВС. По свойству равнобедренного треугольника РН является и высотой. Но через точку Н можно провести только одну прямую, перпендикулярную прямой ВС. Значит прямая КР проходит через точку Н и перпендикулярна ВС. Что и требовалось доказать.